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Abstract

In the light of the inverse problem of dynamics, we study the motion of a material point on an
arbitrary two-dimensional surface, submersed in E3. Under the assumption that a monoparametric family
of geodesics and their orthogonal trajectories form an isothermic coordinate system, we prove that, if the
family of geodesics is a family of orbits of the material point, compatible with the potential, then the system
is integrable with an integral linear in the velocities, while, compatibility of the potential with the orthogonal
trajectories guarantees integrability with a quadratic integral of motion. In both cases, we determine the
form of the potential modulo one or two arbitrary functions respectively and the corresponding form of the
integral, while, for the case of the orthogonal trajectories, we determine the allowed regions of motion on
the surface and their stability.
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1. Introduction

The inverse problem of dynamics in a broad sense consists of the determination of forces,
parameters and constraints which are required for the realization of the motion of a mechanical
system with some properties given in advance [8]. Szebehely [16] published a partial differential
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equation for the potential function V = V (x, y) which produces a monoparametric family of
planar orbits f (x, y) = c and the energy E of them is given in advance as a function of
the constant c namely E = E(c). Mertens [14] studied a family of curves f (u, v) = c on
a surface S in 3-D space using Szebehely’s method and obtained a linear partial differential
equation in the potential function V (u, v). Furthermore, Bozis and Mertens [3] derived a
second order partial differential equation of hyperbolic type for the potential V in which
all the coefficients are known functions of the coordinates u, v and gave some examples.
Borghero [2] determined the expressions for the covariant components Q1, Q2 of forces
acting on a test particle which describe orbits on a given surface, using the procedure of
Dainelli [18]. Bozis and Borghero [5] introduced the notion of the family boundary curves
(FBC) for that version of the inverse problem of dynamics which combines the potential
V (u, v) with a monoparametric family of regular orbits f (u, v) = c on the configuration
manifold (M2, g) of a conservative holonomic system with n = 2 degrees of freedom.
Several examples were given there. Kotoulas [11] studied solvable cases of the PDE in V (u, v)

given by Bozis and Mertens [3]. Moreover, Kotoulas [12] determined the generalized force
field which gives rise to a two-parametric family of orbits on a given surface. A review on
the basic facts of the inverse problem in dynamics was made by Bozis [4] and recently by
Anisiu [1].

Besides providing a relation between permissible families of orbits and the potential, the
inverse problem may supply additional information on the dynamics, as for example decisions
on the integrability of the system through the existence of certain orbits, without knowing
the potential. Ichtiaroglou and Meletlidou [10] have shown that, in the case of planar motion,
the presence of a monoparametric family of conic sections or a family of confocal parabolas
guarantees the integrability of the potential, with an integral of motion quadratic in the velocities.
As special cases, they obtained that the presence of a family of straight lines, intersecting at
a certain point, results to a central potential and a linear integral of motion (i.e. the angular
momentum), while a family of concentric circles guarantees that the potential is separable in
polar coordinates and thus possesses an integral, quadratic in the velocities. On the other hand,
Voyatzi and Ichtiaroglou [17] studied motion on the two-dimensional sphere and showed that
the permissibility of a family of meridians or a family of parallels guarantees integrability, with
linear or quadratic integrals respectively.

Intrigued by these results, we study the motion of a material point on an arbitrary two-
dimensional surface, submersed in E3. We select a coordinate system such that one family of
coordinate lines comprises of geodesics and the other family of their orthogonal trajectories.
Moreover we assume that this coordinate system is isothermic. We prove that, if the family
of geodesics is a family of orbits of the material point, compatible with the potential,
then it is integrable with an integral linear in the velocities, while compatibility of the
potential with the orthogonal trajectories guarantees integrability with a quadratic integral of
motion. In both cases, we determine the form of the potential modulo one or two arbitrary
functions respectively and the corresponding form of the integral, while for the case of the
orthogonal trajectories, we determine the allowed regions of motion on the surface and their
stability.

In Section 2 we present the general setting of the inverse problem of dynamics related with
the motion of a test particle on a given surface, using the selected coordinates. In Section 3 we
study the case of integrability with an integral linear in the velocities, while in Section 4 we study
the case of a quadratic integral. Several specific examples are presented in Section 5 and some
concluding remarks in Section 6.
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2. Motion on a surface

In Euclidean space E3 with an orthonormal Cartesian system of reference Oxyz we assign a
smooth surface S by the parametrization

{x = x(u, v), y = y(u, v), z = z(u, v)} (1)

where u, v are curvilinear coordinates on S. On this surface we also consider a monoparametric
family of regular curves given in the solved form

f (u, v) = c (2)

where c = const. is a parameter which varies along the family (2).
For the given family of orbits we define γ = fv/ fu , where the subscripts denote partial

differentiation with respect to the corresponding variable. The slope function γ represents the
family (2) in the sense that if the family (2) is given, then γ is determined uniquely. On the other
hand, if γ is given, we can obtain a unique family (2). The inverse problem of dynamics consists
in finding potentials V which give rise to this family of orbits (2) on a given surface (1).

The line-element on the surface S in this system of parameters is given by

ds2
= g11du2

+ 2g12dudv + g22dv2 (3)

where g11, g12, g22 are known functions of u, v.
Now, we consider a particle of unit mass which describes any member of the given family

(2). Here we have to clear out that trajectories are bound to a given surface by constraints. The
kinetic energy of the test particle is given by

T =
1
2
(g11u̇2

+ 2g12u̇v̇ + g22v̇
2) (4)

where the dot denotes differentiation with respect to time. The equations of motion of the test
particle are

g11ü + g12v̈ +
1
2
(g11)u(u̇)2

+ (g11)v u̇v̇ + [(g12)v −
1
2
(g22)u](v̇)2

= −Vu,

g12ü + g22v̈ +
1
2
(g22)v(v̇)2

+ (g22)u u̇v̇ + [(g12)u −
1
2
(g11)v](u̇)2

= −Vv.

(5)

Mertens[14] provided a linear, first order partial differential equation for the potential function
V = V (u, v) for any preassigned dependence E = E( f ), of the total energy E of the given
family f = f (u, v). This equation reads

(g22 fu − g12 fv)Vu + (g11 fv − g12 fu)Vv = 2W (E − V ) (6)

where W is given in the Appendix.
Moreover, Bozis and Mertens [3] derived a linear, second order partial differential equation

in V = V (u, v) which is independent of the total energy E and gives all the potential functions
generating family (2) on the given surface (1). The total energy E must be constant along each
orbit, so E = E( f ). So, we have Ev = E f fv and Eu = E f fu . Hence, it is: Ev = γ Eu .
Assuming that W 6= 0, Bozis and Mertens [3] obtained the following equation

k1Vuu + k2Vuv − βVvv + k3Vu + k4Vv = 0 (7)
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where

k1 = αγ, k2 = βγ − α, k3 = γ + γαu − αv, k4 = γβu − βv − 1. (8)

The explicit form of the coefficients α, β, γ is also given in the Appendix.

In the present study, we shall consider the monoparametric family of geodesics f (u, v) =

v = c which induces a regular foliation on S. Then the members of the family v = c can be used
as coordinate lines. In this case we obtain from the equations of geodesics (see e.g. [7, p. 206])

Γ 2
11 = 0, (9)

which means that (g11)v = 0. Hence, we have

g11 = g11(u). (10)

We complete the set of coordinates on S selecting the family of curves u = c, orthogonal to
v = c. So, we have

g12 = 0 (11)

and the metric in (3) is written as

ds2
= g11(u)du2

+ g22(u, v)dv2, (12)

while the equations of motion (5) take the simpler form

ü =
1

g11

[
−

1
2
(g11)u u̇2

+
1
2
(g22)u v̇2

− Vu

]
,

v̈ =
1

g22

[
−

1
2
(g22)v v̇

2
− (g22)u u̇v̇ − Vv

]
. (13)

3. Existence of integrals of motion linear in the velocities

We shall seek for integrals of first degree in velocity components, i.e. integrals of the form

Φ(u, v, u̇, v̇) = A(u, v)u̇ + B(u, v)v̇. (14)

Since the Lagrangian of the system has definite parity with respect to time inversion, the integral
cannot possess terms of zeroth degree in the velocities. Otherwise these terms should be another
integral of motion by themselves, see e.g. [9].

The total derivative of Φ with respect to time must be identically equal to zero, i.e.

dΦ
dt

= Aü + Bv̈ +
∂ A

∂u
u̇2

+
∂ B

∂v
v̇2

+

(
∂ A

∂v
+

∂ B

∂u

)
u̇v̇ ≡ 0. (15)

By replacing the expressions of ü, v̈ from (13) into (15) and we obtain:

C11u̇2
+ C12u̇v̇ + C22v̇

2
+ C10Vu + C01Vv ≡ 0 (16)
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where

C11 = Au −
1
2

A
∂(log g11)

∂u
,

C12 = Av + Bu − B
∂(log g22)

∂u
,

C22 = Bv +
1
2

A
(g22)u

g11
−

1
2

B
∂(log g22)

∂v
,

C10 = −
A

g11
,

C01 = −
B

g22
.

(17)

Since (16) holds by identity, we have

C11 = C12 = C22 = 0, C10Vu + C01Vv = 0. (18)

The last of Eqs. (18) is written as

A

g11
Vu +

B

g22
Vv = 0. (19)

At this point we assume that the monoparametric family of geodesics f (u, v) = v = c are orbits
compatible with the potential V . Then the expression of W in (6) is equal to zero [13]. Moreover,
by taking into account (10), (11) and the fact that fu = 0, the PDE (6) reads

g11Vv = 0. (20)

Comparing Eqs. (19) and (20), we get

A = 0 (21)

and consequently C11 = 0 in (17). From (20) we ascertain that V = V (u). We shall determine
now the unknown function B(u, v). From the requirement that C12 = 0 and C22 = 0, we obtain
respectively

B(u, v) = b(v)g22, B(u, v) = a(u)
√

g22 (22)

where a(u), b(v) are arbitrary C2-functions. Thus, the component of the metric tensor g22 is
equal to

g22 =
a2(u)

b2(v)
(23)

i.e. the coordinates must form an isothermic system (see e.g. [7, p. 95]). Thus, the unknown
function B(u, v) is

B(u, v) =
a2(u)

b(v)
(24)

and the integral of motion becomes

Φ(u, v, u̇, v̇) =
a2(u)

b(v)
v̇. (25)
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We shall prove now that the potential V = V (u) is also compatible with the monoparametric
family f (u, v) = u = c. Indeed, the PDE (7) reads

αvVu = 0. (26)

Since Vu 6= 0, we have: αv = 0 or, equivalently,

∂2(log g22)

∂u∂v
= 0. (27)

Relation (27) is satisfied, since we have assumed that g22 is of the form (23). So, the potential
V = V (u), compatible with the family of geodesics v = c, is also compatible with the
monoparametric family of their orthogonal trajectories f (u, v) = u = c. In the following we
shall study the allowed region on S where a material point can trace these orbits and also their
linear stability. Note that if these orbits are bounded, then they are periodic by necessity.

We consider the Lagrangian of the motion

L =
1
2
(g11u̇2

+ g22v̇
2) − V (u). (28)

The generalized momenta are

pu = g11u̇, pv = g22v̇ (29)

and the Hamiltonian is of the form

H =
1
2

(
p2

u

g11
+

p2
v

g22

)
+ V (u). (30)

From (25) and (29) we obtain

Φ = b(v)pv (31)

and (30) reduces to the effective one-dimensional Hamiltonian

Heff =
1
2

(
p2

u

g11(u)
+

Φ2

a2(u)

)
+ V (u). (32)

Thus, the orbits u = c correspond to the equilibria of Heff. These equilibria are obtained by

pu = 0, Vu −
a′(u)

a3(u)
Φ2

= 0. (33)

Eq. (33)b correlates the value of the parameter c along the family of orbits to the corresponding
constant value of the integral Φ.

Proceeding further, we shall examine the stability type of the equilibrium points. We consider
the system of variational equations

ξ̇ = ΩSξ (34)

where the Ω and S are the 2 × 2 matrices
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Ω =

(
0 1

−1 0

)
, S =


∂2Heff

∂u2

∂2Heff

∂pu∂u
∂2Heff

∂u∂pu

∂2Heff

∂p2
u

 (35)

respectively. The values of the second order derivatives of He are calculated at the equilibrium
points. So, we have to find the eigenvalues µ of the matrix

A = ΩS =

 0
1

g11

−
∂2Heff

∂u2

∣∣∣∣
pu=0

0

 . (36)

Its characteristic equation is

µ2
+

1
g11

∂2Heff

∂u2

∣∣∣∣
pu=0

= 0. (37)

By taking into account (32) and eliminating Φ from (33), the condition for linear stability
(i.e. imaginary µ) is

Vu

{
3au

a
−

auu

au

}
+ Vuu > 0. (38)

On the other hand, by taking into account the inequality E − V ≥ 0, from Eq. (6) we obtain

g22Vu

W
≥ 0, W =

1
2
(g22)u .

So, the motion is allowed in the domain where inequality

Vu

(log g22)u
≥ 0 (39)

is valid. So we conclude the results of this section with the following:

Proposition 1. Consider the two-dimensional surface S, submersed in E3 and let u, v be
(curvilinear in general) coordinates on S. Assume that the lines v = const. are geodesics while
u = const. are their orthogonal trajectories. Assume also that the coordinate system u, v on S is
isothermic. If the family of geodesics is a permissible family of orbits for a material point, moving
on S under the influence of the potential V , then: (a) the potential is of the form V = V (u) and is
integrable with an integral linear in the velocities and (b) the orthogonal trajectories u = const.
are also orbits compatible with V . They are traced on S in the region defined by inequality (39)
and they are linearly stable if inequality (38) is satisfied.

Remark 1. We note here that the integral of motion (14) arises from the variational symmetry

Ew = b(v)
∂

∂v

of the Lagrangian (28) through Noether’s theorem (e.g. [15], p. 277).



2454 T. Kotoulas, S. Ichtiaroglou / Journal of Geometry and Physics 56 (2006) 2447–2461

The first prolongation of Ew is:

pr (1)( Ew) = Ew +
db

dv
v̇

∂

∂v̇

and acting on L, it gives

pr (1)( Ew)(L) = 0.

4. Existence of integrals of motion quadratic in the velocities

We shall seek for integrals quadratic in the velocity components, i.e. integrals of the form

Φ(u, v, u̇, v̇) = A(u, v)u̇2
+ 2B(u, v)u̇v̇ + C(u, v)v̇2

+ D(u, v). (40)

Again, due to the definite parity of the Lagrangian with respect to time inversion, the integral
cannot possess terms linear in the velocities. In this case, we obtain the following relation

dΦ
dt

= Au u̇3
+ (Av + 2Bu)u̇2v̇ + (Cu + 2Bv)u̇v̇2

+ Cv v̇
3

+ 2Au̇ü + 2C v̇v̈ + 2Bu̇v̈ + 2Bv̇ü + Du u̇ + Dv v̇ ≡ 0. (41)

Now, we replace the expressions of ü, v̈ from (13) into (41) and obtain

K30u̇3
+ K21u̇2v̇ + K12u̇v̇2

+ K03v̇
3
+ K10u̇ + K01v̇ ≡ 0 (42)

where

K30 = Au − A
∂(log g11)

∂u
,

K21 = Av + 2Bu − 2B
∂(log g22)

∂u
− B

∂(log g11)

∂u
,

K12 = Cu + 2Bv + A
(g22)u

g11
− 2C

∂(log g22)

∂u
− B

∂(log g22)

∂v
,

K03 = Cv − C
∂(log g22)

∂v
+ B

(g22)u

g11
,

K10 = −
2A

g11
Vu −

2B

g22
Vv + Du,

K01 = −
2B

g11
Vu −

2C

g22
Vv + Dv.

Since (42) holds by identity, we must have

K30 = K21 = K12 = K03 = K10 = K01 = 0. (43)

From equation K30 = 0, we find for the unknown function A(u, v)

A(u, v) = m(v)g11 (44)

where m(v) is an arbitrary function to be determined. In the following we shall try to find the
other arbitrary functions B(u, v), C(u, v) and D(u, v).

At this point we assume that the geodesics v = c are not anymore orbits allowed by the
potential, but now it is compatible with the family of the orthogonal trajectories f (u, v) = u = c.
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Then we have fu = 1, fv = 0 and taking into account (10) and (11), the quantities α and β in
(8) are written as:

α =
g22

(g22)u
, β = 0 (45)

and Eq. (8) becomes

αVuv + αvVu + Vv = 0. (46)

From the relations K10 = 0 and K01 = 0, we take

A

g11
Vu +

B

g22
Vv =

Du

2
,

B

g11
Vu +

C

g22
Vv =

Dv

2
.

(47)

The compatibility condition for system (47) with respect to D leads to the equation(
−

B

g11

)
Vuu +

(
A

g11
−

C

g22

)
Vuv +

(
B

g22

)
Vvv

+

[
Av

g11
−

(
B

g11

)
u

]
Vu +

[(
B

g22

)
v

−

(
C

g22

)
u

]
Vv = 0. (48)

Comparing Eq. (48) with Eq. (46), we take

B(u, v) = 0, (49)

while, from the relation K21 = 0, we have Av = 0. Hence, we take for the arbitrary function
m(v)

m(v) = c′

1 = const. (50)

Here we shall distinguish two cases:

• (i) c′

1 = 0. Then A(u, v) = 0. From the relations K12 = 0 and K03 = 0, we obtain for the
unknown function C

C(u, v) = n(v)g2
22, C(u, v) = l(u)g22. (51)

Thus, the component of metric tensor g22 must equal

g22 =
l(u)

n(v)
. (52)

For reasons of consistency with the notation of the previous section, we put

l(u) = a2(u), n(v) = b2(v). (53)

From (52) we see that also in this case the coordinate system u, v must be isothermic.
Combining relations (51)–(53), we determine function C(u, v),

C(u, v) =
a4(u)

b2(v)
. (54)

Now, we come back in (47) to determine the function D. From Eq. (47)a we find that

D(u, v) = D(v) (55)
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and from (47)b we determine the potential V = V (u, v) as

V (u, v) =
F(u) + D(v)

2a2(u)
(56)

where now F(u), D(v) are arbitrary functions. The integral of motion is given by

Φ(u, v, u̇, v̇) =
a4(u)

b2(v)
v̇2

+ D(v). (57)

• (ii) c′

1 6= 0. Without loss of generality, we set c′

1 = 1 and we have A(u, v) = g11(u). Then we
construct the new integral of motion

Φ′
= Φ − 2E (58)

where E is the energy integral. In this new form of the integral, A = 0 so this case reduces to
the previous one.

For the allowed region we observe the inequality E − V > 0 and Eq. (6) yields again
the condition (39). In order to determine the stability of the orbits, we construct the effective
Hamiltonian, which in this case is

Heff =
1
2

(
p2

u

g11
+

Φ
a2(u)

)
+ G(u) (59)

where G(u) = F(u)/(2a2). Working exactly as in the previous section, we find the condition for
linear stability

Gu

{
3au

a
−

auu

au

}
+ Guu > 0. (60)

We conclude this section with the following:

Proposition 2. Under the assumptions of Proposition 1, if the family of trajectories, orthogonal
to the family of geodesics, is a permissible family of orbits for a material point, moving under
the influence of the potential V , then the potential is of the separable form (56) and is integrable
with an integral quadratic in the velocities, of the form (57). The orbits are traced in the region
defined by inequality (59) and they are linearly stable if inequality (60) is satisfied.

Remark 2. We note here that if a(u) = const., then the Hamiltonian (59) can be written as a
sum of two integrals of motion. In this case, we have

Heff = S(u, pu) + T (u, pv)

where

S(u, pu) =
p2

u

2g11(u)
+

F(u)

2a2 , T (v, pv) =
Φ

2a2

and S(u, pu) is also an integral of motion.

Remark 3. The quadratic integral (57) arises from the generalized symmetry (e.g. [15],
pp. 325–330)

EwQ =
2a4(u)

b2(v)
v̇

∂

∂v
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such that

pr (1)( EwQ)(L) =
d
dt

(
2a4(u)

b2(v)
v̇
∂L
∂v̇

−
a4(u)

b2(v)
v̇2

− D(v)

)
.

5. Examples

In this section we shall give some pertinent examples:

Example 1. We consider motion on R2 and assign the metric

ds2
= dr2

+ r2dθ2

where r and θ are polar coordinates. We consider the family of straight lines θ = c, which are
geodesics, and the orthogonal family of circles r = c. Let us consider that the lines θ = c are
permissible orbits. Then the potential is central, i.e. V = V (r) and there exists an integral of
motion linear in the velocities, Φ = r2θ̇ , i.e. the angular momentum integral. The circles r = c
are also permissible orbits and Eqs. (38) and (39) for the allowed domain and their stability
reduce to the well known conditions Vr > 0 and Vrr/Vr + 3/r > 0. If, on the other hand, we
consider that only the circles r = c are permissible orbits, then the potential is of the form

V =
F(r) + D(θ)

2r2

with F(r), D(θ) arbitrary functions, which is separable in polar coordinates, and there exists an
integral, quadratic in the velocities,

Φ = r4θ̇2
+ 2D(θ).

These results are already known as special cases in Ichtiaroglou and Meletlidou [10]. The
compatibility of the above potential with the family of circles was initially given in Broucke
and Lass [6].

Example 2. We consider motion on the two-dimensional unit sphere S2 with spherical
coordinates θ, φ. The line element is ds2

= dθ2
+ sin2 θdφ2. The meridians φ = c are geodesics

and the parallels θ = c are orthogonal to them. If we assume that the meridians are permissible
orbits for a point mass, the potential is of the form V = V (θ) and there exists the integral of
motion Φ = sin2 θ φ̇, linear in the velocities. If on the other hand, motion on the parallels is
permissible, the potential is of the form

V =
h(θ) + g(φ)

2 sin2 θ

and the integral of motion is

Φ = sin4 θφ̇2
+ 2g(φ).

These results have been recently obtained by Voyatzi and Ichtiaroglou [17].

Example 3. We consider motion on the cone defined by Er (u, v) = {u cos v, u sin v, u}. The line
element is

ds2
= 2du2

+ u2dv2.
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Fig. 1. Surfaces in the Examples 1–6. (a) Cone, (b) Helicoid surface, (c) Catenary surface and (d) Torus with a = b = 1.

The straight lines v = c are geodesics and the circles u = c are orthogonal to them, see Fig. 1(a).
If the geodesics are orbits, compatible with the potential, then it is of the form V = V (u) and
there exists an integral of motion linear in the velocities, Φ = u2v̇. If, on the other hand, motion
on the circles is allowed, the potential must have the form

V =
F(u) + D(v)

2u2

and the second integral of motion is

Φ = u4v̇2
+ D(v).

Example 4. For the helicoid surface defined by Er(u, v) = {u cos v, u sin v, v}, the line element
is

ds2
= du2

+ (1 + u2)dv2.

The geodesics v = c are straight lines while the helical lines u = c are orthogonal to them,
see Fig. 1(b). Motion on the straight lines leads to the potential V = V (u) and the integral
Φ = (1 + u2)v̇ while motion on the helical lines is compatible with the potential

V =
F(u) + D(v)

2(1 + u2)
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and the integral

Φ = (1 + u2)2v̇2
+ D(v).

Example 5. The line element on the catenary surface

Er(u, v) =

{
3 cosh

(u

3

)
cos v, 3 cosh

(u

3

)
sin v, u

}
is given by

ds2
= cosh2

(u

3

)
du2

+ 9 cosh2
(u

3

)
dv2.

The geodesics are the intersections with the meridian planes v = c and the circles u = c are
orthogonal to them, see Fig. 1(c). If the geodesics are permissible orbits, the potential is of the
form V = V (u) and there exists an integral of motion linear in the velocities,

Φ = 9 cosh2
(u

3

)
v̇

and if the circles are permissible orbits, then the potential is

V =
F(u) + D(v)

18 cosh2( u
3 )

and there exists an integral of motion quadratic in the velocities,

Φ = 81 cosh4
(u

3

)
v̇2

+ D(v).

Example 6. For motion on the torus

Er(u, v) = {cos v[a + b cos u], sin v[a + b cos u], b sin u},

with a, b > 0, u ≥ 0, v < 2π we have

ds2
= b2du2

+ (a + b cos u)2dv2.

The meridian circles v = c are geodesic lines and the horizontal circles u = c are their
orthogonal trajectories, see Fig. 1(d). For permissible motion on the geodesics, the potential must
be V = V (u) and there exists an integral of motion linear in the velocities Φ = (a + b cos u)2v̇,
while for motion on the horizontal circles, the potential must be of the form

V =
F(u) + D(v)

2(a + b cos u)2 ,

with the integral

Φ = (a + b cos u)4v̇2
+ D(v).

6. Conclusions

In this paper we study the motion of a material point on a two-dimensional surface. We select
orthogonal coordinates u, v, such that the lines v = const. are geodesics, while u = const. are
their orthogonal trajectories and we assume that the coordinate system is isothermic. We prove
that, if the family of geodesics is a family of orbits of the material point, compatible with the
potential, then it is integrable with an integral linear in the velocities, while compatibility of
the potential with the orthogonal trajectories guarantees integrability with a quadratic integral of
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motion. In both cases, we determine the form of the potential and the corresponding form of the
integral, while, for the case of the orthogonal trajectories, we determine the allowed regions of
motion on the surface and the stability of the orbits. We also show that in the first case where
the geodesics are permissible orbits, their orthogonal trajectories are also compatible with the
potential. This is consistent with Proposition 2, since the systems of Proposition 1 are also
integrable with a “quadratic” integral of motion, if one considers the square of the linear integral.
Note that the potentials of Propositions 1 and 2 are of a form, separable in the coordinates u, v.

The compatibility of these orbits with the potential is only a sufficient condition for
separability. From the case of planar motion, where the existence of suitable families of conics
guarantees also separability [10] we know that this condition is in general not also necessary. It
would be interesting to search for the existence of other permissible monoparametric families of
orbits with this property, for the case of motion on a two-dimensional surface in a general setting.
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Appendix

Here we supply the necessary formulas for the various functions in Section 2, for the general
case of motion of a material point on an arbitrary surface [3].

α =
1

2W
(g22 fu − g12 fv), β =

1
2W

(−g12 fu + g11 fv), γ =
fv
fu

,

W =
1
A

[g( f 2
v fuu − 2 fu fv fuv + f 2

u fvv) − B1(g22 fu − g12 fv) − B2(g11 fv − g12 fu)],

A = g11 f 2
v − 2g12 fu fv + g22 f 2

u ,

B1 =
1
2
(g11)u f 2

v +

[
(g12)v −

1
2
(g22)u

]
f 2
u − (g11)v fu fv,

B2 =

[
(g12)u −

1
2
(g11)v

]
f 2
v +

1
2
(g22)v f 2

u − (g22)u fu fv,

g = g11g22 − (g12)
2.
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